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Abstract
To combat the evolving Android malware attacks,
in this paper, instead of only using Application Pro-
gramming Interface (API) calls, we further ana-
lyze the different relationships between them and
create higher-level semantics which require more
efforts for attackers to evade the detection. We
represent the Android applications (apps), related
APIs, and their rich relationships as a structured
heterogeneous information network (HIN). Then
we use a meta-path based approach to characterize
the semantic relatedness of apps and APIs. We use
each meta-path to formulate a similarity measure
over Android apps, and aggregate different simi-
larities using multi-kernel learning to make predic-
tions. Promising experimental results based on real
sample collections from Comodo Cloud Security
Center demonstrate that our developed system Hin-
Droid outperforms other alternative Android mal-
ware detection techniques.

1 Introduction
Due to the mobility and ever expanding capabilities, smart
phones have been widely used in people’s daily life. An-
droid, as an open source and customizable operating system
for smart phones, is currently dominating the smart phone
market by over 81% [IDC, 2017]. Due to its large market
share and open source ecosystem of development, Android
attracts not only the developers for producing legitimate An-
droid applications (apps), but also attackers to disseminate
malware (malicious software) that deliberately fulfills the
harmful intent to the smart phone users. Many examples of
Android malware have already been released in the market
(e.g., Geinimi, DriodKungfu and Lotoor) which posed seri-
ous threats to the smart phone users, such as stealing user
credentials and locking user’s smart phone until the ransom
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is paid [Felt et al., 2011]. It’s reported that one in every five
Android apps were actually malware [Wood, 2015]. The in-
creasing volume and sophistication of Android malware calls
for new defensive techniques that are robust and capable of
protecting users against novel threats [Burguera et al., 2011;
Wu and Hung, 2014; Dimjasevic et al., 2016; Chen et al.,
2017a; Ye et al., 2017b].

To combat the Android malware’s evasion tactics, in this
paper, instead of using API calls only, we further analyze
the relationships among them, e.g., whether the extracted API
calls belong to the same code block, are with the same pack-
age name, or use the same invoke method, etc. Relations be-
tween APIs and apps and different types relations among apps
themselves can introduce higher-level semantics and require
more efforts for attackers to evade the detection. To repre-
sent the rich semantics of relationships, we first introduces
a structured heterogeneous information network (HIN) [Sun
and Han, 2012] representation to depict apps and APIs. Then
we use meta-path [Sun et al., 2011] to incorporate higher-
level semantics to build up the semantic relatedness of apps.
Since there can be multiple meta-paths to define different
similarities and we want to incorporate all useful meta-paths
and discard useless ones, we propose to use a multi-kernel
learning algorithm [Vishwanathan et al., 2010] to automati-
cally learn the weights of different similarities from data. We
then develop an intelligent system HinDroid for automatic
Android malware detection. Promising experimental results
based on the real sample collection from Comodo Cloud Se-
curity Center demonstrate the effectiveness and efficiency of
HinDroid, which has been incorporated into the scanning tool
of Comodo Mobile Security product.

2 System Architecture
The system architecture of HinDroid is shown in Figure 1,
which consists of the following five major components.

• Unzipper and Decompiler: It first unzips each Android
Application Package (APK) to get the dex file, and then
generates the smali codes by decompiling the dex file. Dex
[Hou et al., 2017] is a file format which contains com-
piled code written for Android and can be interpreted by
the DalvikVM, but it is unreadable. We need to convert the
dex file to a readable format. Smali is an assembler/dis-
assembler for the dex format, which provides us readable
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code in smali language. Smali code [Hou et al., 2017]
is the intermediate but interpreted code between Java and
DalvikVM. Listing 1 shows a segment of the converted
smali code from a ransomware “Locker.apk” that will lock
user’s smart phone until the ransom is paid.

1 . method p r o t e c t e d
2 l o a d L i b s ( L a n d r o i d / c o n t e n t / C o n t e x t ; ) V
3 . l o c a l s 4
4 : t r y s t a r t 0
5 new−i n s t a n c e v0 , L java / i o / B u f f e r e d R e a d e r ;
6 new−i n s t a n c e v1 , L java / i o / I n p u t S t r e a m R e a d e r ;
7 invoke−s t a t i c {} , L j ava / l a n g / Runtime;−>ge tRun t ime ( )

L java / l a n g / Runtime ;
8 move−r e s u l t−o b j e c t v2
9 c o n s t−s t r i n g v3 , ” g e t p r o p ro . p r o d u c t . cpu . a b i ”
10 invoke−v i r t u a l {v2 , v3} , L j ava / l a n g / Runtime;−>exec

( L java / l a n g / S t r i n g ; ) L java / l a n g / P r o c e s s ;
11 move−r e s u l t−o b j e c t v2
12 invoke−v i r t u a l {v2} , L j ava / l a n g / P r o c e s s;−>g e t I n p u t S t r e a m ( )

L java / i o / I n p u t S t r e a m ;
13 . . . . . .
14 . end method

Listing 1: An example of smali code.

• Feature Extractor: As API calls can be used to represent
the behaviors of an Android app, it automatically extracts
the API calls from the decompiled smali codes generated
from the previous component. Based on the extracted API
calls, the relationships among them will be further ana-
lyzed, i.e., if the extracted API calls belong to the same
smali code block, are with the same package name, or use
the same invoke method. (See Section 3.1 for details).

• HIN Constructor: This component constructs the HIN
based on the features extracted by the previous compo-
nents. It first builds connections between the apps and
the extracted API calls, and defines the types of relation-
ships between these API calls. Then the adjacency matri-
ces among different entity types are constructed, and fur-
ther the commuting matrices of different meta-paths are
enumerated and built. (See Section 3.2 for details.)

• Multi-kernel Learner: Given the commuting matrices
from HIN, we build kernels for the Support Vector Ma-
chines (SVMs). Using standard multi-kernel learning, the
weights of different meta-paths can be optimized. Given
the meta-path weights, the different commuting matrices
can be combined to formulate a more powerful kernel for
Android malware detection. (See Section 3.3 for details.)

• Malware Detector: For each newly collected unknown
Android app, it will be first parsed through the unzip-
per and decompiler to get the smali codes, then its API
calls will be extracted from the smali codes, and the rela-
tionships among these API calls will be further analyzed.
Based on these extracted features and using the constructed
classification model, this app will be labeled as either be-
nign or malicious.

3 Proposed Method
3.1 Feature Extraction
As API calls are used by the Android apps to access op-
erating system functionality and system resources [Tam et

Figure 1: System architecture of HinDroid.

al., 2015], they can be used as representations of the be-
haviors of Android apps [Wu et al., 2012; Peiravian and
Zhu, 2013; Yang et al., 2014]. After we unzip and decom-
pile the collected Android apps, the API calls will be ex-
tracted from the decompiled smali codes. For example, in
the smali code segment shown in Listing 1, the API calls
of “Ljava/lang/Runtime; → getRuntime() Ljava/lang/Run-
time” , “Ljava/lang/Runtime; → exec (Ljava/lang/String;)
Ljava/lang/Process” and “Ljava/lang/Process; → getInput-
Stream() Ljava/io/InputStream”will be extracted. After the
extraction of the API calls, to describe the relation (i.e., R0)
between app and API, we build the App-API matrix A whose
element Aij = aij ∈ {0, 1} denotes if app i contains API j.

Although API calls can be used to represent the behav-
iors of an Android app, the relations among them can im-
ply important information for malware detection [Ye et al.,
2011]. For example, as the aforementioned ransomeware
“Locker.apk”, the API calls of “Ljava/io/FileOutputStream
→ write”, “Ljava/io/IOException → printStackTrace”, and
“Ljava/lang /System → load” together in the method of
“loadLibs” in the converted smali code indicate this ran-
somware intends to write malicious code into system kernel.
Though it may be common to use them individually in be-
nign apps, they three together in the same method of the con-
verted smali code rarely appear in benign files. Thus, the
relationship that these three API calls co-exist in the same
method in the converted smali code is an important informa-
tion for such ransomware detection. To describe such rela-
tionships, we define a code block as the code between a pair
of “.method” and “.endmethod” in the smali file, which
reflects the structural information among the API calls. To
represent such kind of relationship R1, we generate the API-
CodeBlock matrix B where each element Bij = bij ∈ {0, 1}
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denotes whether this pair of API calls belong to the same
code block. Except for that whether the API calls co-exist
in the same code block, we find that API calls which be-
long to the same package always show similar intent and in-
dicate strong connections among them. For example, the API
calls in the package of “Lorg/apache/http/HttpRequest” are
related to Internet connection. To represent such kind of re-
lationship R2, we generate the API-Package matrix P where
each element Pij = pij ∈ {0, 1} denotes if a pair of API
calls belong to the same package. In the smali code, there
are five different methods to invoke an API call, which are
invoke-static, invoke-virtual, invoke-direct, invoke-super, and
invoke-interface. The same invoke method can show the com-
mon properties of the API calls (like the words have the same
part of speech), which indicate implicit associations among
them. To represent this kind of relationship R3, we gen-
erate the API-InvokeMethod matrix I where each element
Iij = iij ∈ {0, 1} indicates whether a pair of API calls use
the same invoke method.

The relationships among the extracted API calls (i.e.,
whether they belong to the same code block, are with the
same package name, or use the same invoke method) create a
higher-level representation than a simple list of API calls and
require more efforts for attackers to evade the detection (e.g.,
it may result in execution collapse if the attackers add several
non-associated API calls in the same code block).

3.2 HIN Construction
Given the analysis of rich relationship types of API calls for
Andriod apps, it is important to model them in a proper way
so that different relations can be better and easier handled.
When we apply machine learning algorithms, it is also better
to distinguish different types of relations. Here, we introduce
how to use heterogeneous information network to represent
the Andriod apps by using the features extracted above.

Definition 1 [Sun and Han, 2012] A heterogeneous infor-
mation network (HIN) is a graph G = (V, E) with an entity
type mapping φ: V → A and a relation type mapping ψ:
E → R, where V denotes the entity set and E denotes the
link set, A denotes the entity type set and R denotes the re-
lation type set, and the number of entity types |A| > 1 or the
number of relation types |R| > 1. The network schema for
network G, denoted as TG = (A,R), is a graph with nodes
as entity types from A and edges as relation types fromR.

HIN not only provides the network structure of the data as-
sociations, but also provides a high-level abstraction of the
categorical association. In our application for Android mal-
ware detection, we have two entity types (i.e., Android app
and API call) and four relation types (i.e., R0-R3). The dif-
ferent types of entities and different relations of APIs moti-
vate us to use a machine-readable representation to enrich the
semantics of similarities among APIs. Meta-path [Sun et al.,
2011] was used in the concept of HIN to formulate the seman-
tics of higher-order relationships among entities. We follow
this concept and extend it to our HinDroid framework.

Definition 2 [Sun et al., 2011] A meta-path P is a path de-
fined on the graph of network schema TG = (A,R), and

is denoted in the form of A1
R1−−→ A2

R2−−→ . . .
RL−−→ AL+1 ,

which defines a composite relation R = R1 · R2 · . . . · RL

between types A1 and AL+1, where · denotes relation com-
position operator, and L is the length of P .

A typical meta-path P1 for apps is App contains−−−−−→ API
contains−1

−−−−−−−→ App, which means that we want to connect two
apps through the path containing the same API over the
HIN; another example meta-path P2 is App contains−−−−−→ API
same code block−−−−−−−−−−→ API contains−1

−−−−−−−→ App, which denotes that we
compute the similarity between two apps not only consider-
ing API calls inside, but also considering the type of API calls
inside. To measure the similarity over apps using a particu-
lar meta-path, we use commuting matrix [Sun et al., 2011]
to compute the counting-based similarity matrix for a meta-
path. Take P1 as an example, the commuting matrix of apps
computed using P1 is AAT , while the one for P2 is ABAT .

3.3 Multi-Kernel Learning
Given a network schema with different types of entities and
relations, we can enumerate a lot of meta-paths. However,
not all of the meta-paths are useful for the particular Android
malware detection problem. Here we propose to use a multi-
kernel learning algorithm to automatically incorporate differ-
ent similarities and determine the weight for each meta-path
when classifying apps.

Suppose we haveK meta-paths Pk, k = 1, . . . ,K . We can
compute the corresponding commuting matrices MPk

, k =
1, . . . ,K , where MPk

is regarded as a kernel. If the commut-
ing matrix is not a kernel (not positive semi-definite, PSD),
we simply use the trick to remove the negative eigenvalues
of the commuting matrix. Following [Gönen and Alpaydin,
2011; Vishwanathan et al., 2010], we use the linear combina-
tion of kernels to form a new kernel:

M =

K∑
k

βkMPk
, (1)

where the weights βk ≥ 0 and satisfy
∑K

k=1 βk = 1. In
our application, we then use the p-norm multi-kernel learning
framework [Vishwanathan et al., 2010] to learn the weight of
each meta-path [Hou et al., 2017].

4 Experimental Results and Analysis
In this section, we evaluate the performance of our devel-
oped system HinDroid which integrates the above proposed
method for automatic Android malware detection, based on
the real sample collection from Comodo Cloud Security Cen-
ter, which contains 1,834 training Android apps (920 benign
and 914 malicious) and 500 testing samples (198 benign and
302 malicious). We use accuracy (ACC) and F1 measure
[Hou et al., 2017] for evaluations.

Based on the collected dataset, resting on the 200 extracted
API calls and the three different kinds of relationships gener-
ated among them (R1-R3 described in Section 3.1), we con-
struct 16 meta-paths (PID1-PID16 shown in Table 1) and
compare their detection performances by using SVM. We
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Method PID1 PID2 PID3 PID4 PID5 PID6 PID7 PID8 PID9
ACC 0.944 0.950 0.942 0.904 0.940 0.942 0.846 0.850 0.812
F1 0.953 0.958 0.950 0.918 0.948 0.950 0.868 0.872 0.837

Method PID10 PID11 PID12 PID13 PID14 PID15 PID16 PID17 PID18
ACC 0.866 0.908 0.846 0.918 0.826 0.816 0.846 0.968 0.986
F1 0.876 0.918 0.860 0.928 0.824 0.860 0.860 0.974 0.988

PID1: AAT ; PID2: ABAT ; PID3: APAT ; PID4: AIAT ; PID5: ABPBTAT ; PID6: APBPTAT ;
PID7: ABIBTAT ; PID8: AIBITAT ; PID9: APIPTAT ; PID10: AIPITAT ; PID11: ABPIPTBTAT ;
PID12: APBIBTPTAT ; PID13: ABIPITBTAT ; PID14: AIBPBT ITAT ; PID15: AIPBPT ITAT ;
PID16: APIBITPTAT ; PID17: Combined-kernel (16); PID18: Multi-kernel (16) (i.e., HinDroid).

Method ANN-f1 NB-f1 DT-f1 SVM-f1 ANN-f2 NB-f2 DT-f2 SVM-f2 HinDroid
ACC 0.902 0.836 0.904 0.944 0.930 0.886 0.944 0.952 0.986
F1 0.917 0.851 0.920 0.953 0.941 0.903 0.954 0.959 0.988
f1: all the algorithms use original app features (i.e., API calls) as input;
f2: we simply put all HIN-related entities and relations as features for different algorithms to learn.

Table 1: Detection performance evaluation of HinDriod and comparisons with other alternative methods.

then use all the meta-paths as the kernels and apply multi-
kernel learning (described in Section 3.3) for Android mal-
ware detection (i.e., PID18); for comparison, we also eval-
uate the combined similarity [Wang et al., 2015] by using
the Laplacian scores as the weights for the constructed meta-
paths to construct a new kernel (i.e., PID17) fed to the SVM.
From the results shown in Table 1, it can be observed that (1)
different meta-paths indeed show different detection perfor-
mance, as they provide different similarities with different
semantic meanings; (2) by combining different meta-paths
using Laplacian scores, it can improve the performance; (3)
the method using multi-kernel learning successfully outper-
forms the single meta-paths and the unsupervised meta-path
selection algorithm, i.e., Laplacian score, which demonstrates
that multi-kernel learning can successfully filter out the meta-
paths that do not perform well on the malware prediction
problem while maintaining the “good” ones for final decision
of malware detection.

Figure 2: Parameter sensitivity. Figure 3: Scalability evaluation.

To further evaluate the detection performance of HinDriod,
(i.e., the system integrating multi-kernel learning based on
all the constructed 16 meta-paths - PID18), we also compare
HinDroid with other four typical classification methods [Hou
et al., 2017] (i.e., Artificial Neural Network (ANN), Naive
Bayes (NB), Decision Tree (DT), and SVM), based on the

extracted API calls (denoted as f1) and feature engineering
(denoted as f2, i.e., we simply put all HIN-related entities and
relations as features for different algorithms to learn). From
the results shown in Table 1, we can see that (1) feature engi-
neering helps the performance of machine learning; however,
(2) HinDroid further outperforms these alternative classifica-
tion methods with feature engineering in Android malware
detection. The reason behind this is that, in HinDroid we
use more expressive representation for the data, and build the
connection between the higher-level semantics of the data and
the final results.

We also further evaluate the stability and scalability of Hin-
Droid. Figure 2 shows the stability of HinDroid (i.e., using
different values of the penalty parameter C ranging from 1
to 105 based on five-fold cross validations); while Figure 3
shows the scalability of HinDroid (i.e., training time with dif-
ferent sizes of the training data sets).

5 System Deployment and Operation
Due to its detection effectiveness and efficiency, our devel-
oped system HinDroid has already been incorporated into the
scanning tool of Comodo’s Mobile Security Product. Hin-
Droid has been used to predict the daily sample collection
from Comodo Cloud Security Center which contains over
15,000 unknown files per day. Note that Android malware
techniques are constantly evolving and new malware samples
are produced on a daily basis. To account for the temporal
trends of Android malware writing, the training sets of our
developed system are dynamically changing to include newly
collected apps. Our system HinDroid has been deployed and
tested based on the real daily sample collection for around
half a year (about 2,700,000 Android apps in total that have
either been trained or tested).

6 Conclusion
To combat the Android malware threats, our preliminary
works [Hou et al., 2016a; 2016b; Chen et al., 2017a; 2017b;
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Ye et al., 2017a] have attempted for automatic Andriod mal-
ware detection. To make the attackers evade the detection
harder, in this paper, we present a novel Android malware de-
tection framework HinDroid, which introduces a structured
HIN representation of Android apps and employ multi-kernel
learning to aggregate different similarities formulated by dif-
ferent meta-paths over HIN for classification. Due to its de-
tectionn effectiveness and efficiency, our developed system
HinDroid has been incorporated into the scanning tool of Co-
modo Mobile Security product.
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